logo

qmk_firmware

custom branch of QMK firmware git clone https://anongit.hacktivis.me/git/qmk_firmware.git

readme.md (4369B)


  1. # Rev1
  2. This readme describes the specifics of using the rev1 design
  3. ## First Time Setup
  4. Clone the `qmk_firmware` repo and navigate to its top level directory. [Once your build environment is setup](https://docs.qmk.fm/getting_started_build_tools.html), you'll be able to generate the default .hex using the [build/compile instructions](https://docs.qmk.fm/build-compile-instructions) in the docs
  5. If everything worked correctly you will see a file:
  6. ```bash
  7. lets_split_vitamins_rev1_YOUR_KEYMAP_NAME.hex
  8. ```
  9. If you want, you can flash the hex file to the keyboard right after compilation, by adding `:avrdude` to the end of the make command like so:
  10. ```bash
  11. make lets_split_vitamins/rev1:default:avrdude
  12. ```
  13. This will both compile the hex, and flash the connected half.
  14. For more information on customizing keymaps, take a look at the primary documentation for [Customizing Your Keymap](/readme.md##customizing-your-keymap) in the main readme.md.
  15. ## Entering bootloader
  16. If the keyboard isn't new, and has been flashed before, you need to enter bootloader.
  17. To enter bootloader, either use the assigned keys on the keymap, or if none have been put in the keymap, quickly short the reset to gnd twice. (Bottom pins of programming header, see image) ![Reset pins](https://i.imgur.com/LCXlv9W.png)
  18. If using the default keymap, there's a reset key-combination on each half:
  19. ***Lower (SW23) and left-shift (SW13)*** on the left half, or
  20. ***Raise(SW44) and Enter(SW42)*** on the right half
  21. It is recommended to add such reset keys to any custom keymaps. It shouldn't be necesarry to have one on each half, but the default layout has that.
  22. The board exits bootloader mode after 8 seconds, if you haven't started flashing.
  23. ## EEPROM
  24. If this is the first time you're flashing the boards, you have to flash EEPROM
  25. 0. If your keyboard is plugged in, unplug it
  26. 1. Open a terminal, and navigate to the qmk_firmware folder
  27. 1. Run `ls /dev | grep tty` Note down which ports you see
  28. 1. Plug the keyboard in, if it's new, it should enter bootloader, if it's not new, see **Entering bootloader** on how to enter bootloader mode
  29. 1. Right after entering bootloader, run `ls /dev | grep tty` again. There should be a new tty, this is the bootloader TTY, note it down. If nothing shows see **Entering bootloader** on how to enter bootloader mode
  30. 1. For the left hand side, run `avrdude -c avr109 -p m32u4 -P /dev/ttyS1 -U eeprom:w:"./quantum/split_common/eeprom-lefthand.eep":a`
  31. Replace ***/dev/ttyS1*** with the port you noted down earlier. If you're on windows using msys2, replace ***/dev/ttyS1*** with COM2, note that the number is one higher than the tty number.
  32. Do the same For the right hand, but change the file to ***eeprom-righthand.eep***
  33. Your EEPROM should be flashed :)
  34. In the future, you shouldn't need to flash EEPROM (it will in fact wear the eeprom memory, so don't)
  35. ## Flashing
  36. If you haven't flashed EEPROM before, do that first.
  37. To flash keymaps onto the keyboard, use:
  38. ```bash
  39. make lets_split_vitamins/rev1:[KEYMAP]:avrdude
  40. ```
  41. from the qmk_firmware folder. Default being the default keymap.
  42. ## Cases
  43. The keyboard is supplied with some simple plate cases, alternatively a 3D model for the left half is available [here](https://cad.onshape.com/documents/c6e5ae250d1e24fe46c9ef6c/w/d69f7049c0921df3d2b241f9/e/ecc2b176ab52a6d77bc55051).
  44. Alternatively the flat case for the Rev2 works for the rev1 kit as well, however one of the supports collide with a diode. If printed in thermo-plastics this can be heated and pressed to form a recess for the diode.
  45. ## WS2812 RGB
  46. If you wish to add RGB LED strips to your board, then the boards have breakouts for these.
  47. You can either have each halfcontrol it's own strip of LEDs, or, if you're using a TRRS cable, you can have one half control the LEDs in both halves.
  48. To add RGB LEDs to the board, solder the + and - of the >WS2812 headers to the LED strips. Then if you want each half to control it's own set of LEDs seperately, solder the D pad to Din on the strips.
  49. If you instead want to syncronize the halves over a TRRS cable, solder the D pad to Din in the side you want to control the strips, either will work so flip a coin, and then solder the Dout pad to the WS2812> pad on the board. On the other half, solder the WS2812> pad to Din.
  50. ![pad legend](https://i.imgur.com/g6ane0Q.jpg)