ec_switch_matrix.c (13748B)
- /* Copyright 2023 Cipulot
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #include "ec_switch_matrix.h"
- #include "analog.h"
- #include "atomic_util.h"
- #include "math.h"
- #include "print.h"
- #include "wait.h"
- #if defined(__AVR__)
- # error "AVR platforms not supported due to a variety of reasons. Among them there are limited memory, limited number of pins and ADC not being able to give satisfactory results."
- #endif
- #define OPEN_DRAIN_SUPPORT defined(PAL_MODE_OUTPUT_OPENDRAIN)
- eeprom_ec_config_t eeprom_ec_config;
- ec_config_t ec_config;
- // Pin and port array
- const pin_t row_pins[] = MATRIX_ROW_PINS;
- const pin_t amux_sel_pins[] = AMUX_SEL_PINS;
- const pin_t amux_en_pins[] = AMUX_EN_PINS;
- const pin_t amux_n_col_sizes[] = AMUX_COL_CHANNELS_SIZES;
- const pin_t amux_n_col_channels[][AMUX_MAX_COLS_COUNT] = {AMUX_COL_CHANNELS};
- #ifdef UNUSED_POSITIONS_LIST
- const uint8_t UNUSED_POSITIONS[][2] = UNUSED_POSITIONS_LIST;
- # define UNUSED_POSITIONS_COUNT (sizeof(UNUSED_POSITIONS) / sizeof(UNUSED_POSITIONS[0]))
- #endif
- #define AMUX_SEL_PINS_COUNT ARRAY_SIZE(amux_sel_pins)
- #define EXPECTED_AMUX_SEL_PINS_COUNT ceil(log2(AMUX_MAX_COLS_COUNT)
- // Checks for the correctness of the configuration
- _Static_assert(ARRAY_SIZE(amux_en_pins) == AMUX_COUNT, "AMUX_EN_PINS doesn't have the minimum number of bits required to enable all the multiplexers available");
- // Check that number of select pins is enough to select all the channels
- _Static_assert(AMUX_SEL_PINS_COUNT == EXPECTED_AMUX_SEL_PINS_COUNT), "AMUX_SEL_PINS doesn't have the minimum number of bits required address all the channels");
- // Check that number of elements in AMUX_COL_CHANNELS_SIZES is enough to specify the number of channels for all the multiplexers available
- _Static_assert(ARRAY_SIZE(amux_n_col_sizes) == AMUX_COUNT, "AMUX_COL_CHANNELS_SIZES doesn't have the minimum number of elements required to specify the number of channels for all the multiplexers available");
- static uint16_t sw_value[MATRIX_ROWS][MATRIX_COLS];
- static adc_mux adcMux;
- // Initialize the row pins
- void init_row(void) {
- // Set all row pins as output and low
- for (uint8_t idx = 0; idx < MATRIX_ROWS; idx++) {
- gpio_set_pin_output(row_pins[idx]);
- gpio_write_pin_low(row_pins[idx]);
- }
- }
- // Initialize the multiplexers
- void init_amux(void) {
- for (uint8_t idx = 0; idx < AMUX_COUNT; idx++) {
- gpio_set_pin_output(amux_en_pins[idx]);
- gpio_write_pin_low(amux_en_pins[idx]);
- }
- for (uint8_t idx = 0; idx < AMUX_SEL_PINS_COUNT; idx++) {
- gpio_set_pin_output(amux_sel_pins[idx]);
- }
- }
- // Disable all the unused rows
- void disable_unused_row(uint8_t row) {
- // disable all the other rows apart from the current selected one
- for (uint8_t idx = 0; idx < MATRIX_ROWS; idx++) {
- if (idx != row) {
- gpio_write_pin_low(row_pins[idx]);
- }
- }
- }
- // Select the multiplexer channel of the specified multiplexer
- void select_amux_channel(uint8_t channel, uint8_t col) {
- // Get the channel for the specified multiplexer
- uint8_t ch = amux_n_col_channels[channel][col];
- // momentarily disable specified multiplexer
- gpio_write_pin_high(amux_en_pins[channel]);
- // Select the multiplexer channel
- for (uint8_t i = 0; i < AMUX_SEL_PINS_COUNT; i++) {
- gpio_write_pin(amux_sel_pins[i], ch & (1 << i));
- }
- // re enable specified multiplexer
- gpio_write_pin_low(amux_en_pins[channel]);
- }
- // Disable all the unused multiplexers
- void disable_unused_amux(uint8_t channel) {
- // disable all the other multiplexers apart from the current selected one
- for (uint8_t idx = 0; idx < AMUX_COUNT; idx++) {
- if (idx != channel) {
- gpio_write_pin_high(amux_en_pins[idx]);
- }
- }
- }
- // Discharge the peak hold capacitor
- void discharge_capacitor(void) {
- #ifdef OPEN_DRAIN_SUPPORT
- gpio_write_pin_low(DISCHARGE_PIN);
- #else
- gpio_write_pin_low(DISCHARGE_PIN);
- gpio_set_pin_output(DISCHARGE_PIN);
- #endif
- }
- // Charge the peak hold capacitor
- void charge_capacitor(uint8_t row) {
- #ifdef OPEN_DRAIN_SUPPORT
- gpio_write_pin_high(DISCHARGE_PIN);
- #else
- gpio_set_pin_input(DISCHARGE_PIN);
- #endif
- gpio_write_pin_high(row_pins[row]);
- }
- // Initialize the peripherals pins
- int ec_init(void) {
- // Initialize ADC
- palSetLineMode(ANALOG_PORT, PAL_MODE_INPUT_ANALOG);
- adcMux = pinToMux(ANALOG_PORT);
- // Dummy call to make sure that adcStart() has been called in the appropriate state
- adc_read(adcMux);
- // Initialize discharge pin as discharge mode
- gpio_write_pin_low(DISCHARGE_PIN);
- #ifdef OPEN_DRAIN_SUPPORT
- gpio_set_pin_output_open_drain(DISCHARGE_PIN);
- #else
- gpio_set_pin_output(DISCHARGE_PIN);
- #endif
- // Initialize drive lines
- init_row();
- // Initialize AMUXs
- init_amux();
- return 0;
- }
- // Get the noise floor
- void ec_noise_floor(void) {
- // Initialize the noise floor
- for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
- for (uint8_t col = 0; col < MATRIX_COLS; col++) {
- ec_config.noise_floor[row][col] = 0;
- }
- }
- // Sample the noise floor
- for (uint8_t i = 0; i < DEFAULT_NOISE_FLOOR_SAMPLING_COUNT; i++) {
- for (uint8_t amux = 0; amux < AMUX_COUNT; amux++) {
- disable_unused_amux(amux);
- for (uint8_t col = 0; col < amux_n_col_sizes[amux]; col++) {
- uint8_t sum = 0;
- for (uint8_t i = 0; i < (amux > 0 ? amux : 0); i++)
- sum += amux_n_col_sizes[i];
- uint8_t adjusted_col = col + sum;
- for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
- #ifdef UNUSED_POSITIONS_LIST
- if (is_unused_position(row, adjusted_col)) continue;
- #endif
- disable_unused_row(row);
- ec_config.noise_floor[row][adjusted_col] += ec_readkey_raw(amux, row, col);
- }
- }
- }
- wait_ms(5);
- }
- // Average the noise floor
- for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
- for (uint8_t col = 0; col < MATRIX_COLS; col++) {
- ec_config.noise_floor[row][col] /= DEFAULT_NOISE_FLOOR_SAMPLING_COUNT;
- }
- }
- }
- // Scan key values and update matrix state
- bool ec_matrix_scan(matrix_row_t current_matrix[]) {
- bool updated = false;
- for (uint8_t amux = 0; amux < AMUX_COUNT; amux++) {
- disable_unused_amux(amux);
- for (uint8_t col = 0; col < amux_n_col_sizes[amux]; col++) {
- uint8_t sum = 0;
- for (uint8_t i = 0; i < (amux > 0 ? amux : 0); i++)
- sum += amux_n_col_sizes[i];
- uint8_t adjusted_col = col + sum;
- for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
- #ifdef UNUSED_POSITIONS_LIST
- if (is_unused_position(row, adjusted_col)) continue;
- #endif
- disable_unused_row(row);
- sw_value[row][adjusted_col] = ec_readkey_raw(amux, row, col);
- if (ec_config.bottoming_calibration) {
- if (ec_config.bottoming_calibration_starter[row][adjusted_col]) {
- ec_config.bottoming_reading[row][adjusted_col] = sw_value[row][adjusted_col];
- ec_config.bottoming_calibration_starter[row][adjusted_col] = false;
- } else if (sw_value[row][adjusted_col] > ec_config.bottoming_reading[row][adjusted_col]) {
- ec_config.bottoming_reading[row][adjusted_col] = sw_value[row][adjusted_col];
- }
- } else {
- updated |= ec_update_key(¤t_matrix[row], row, adjusted_col, sw_value[row][adjusted_col]);
- }
- }
- }
- }
- return ec_config.bottoming_calibration ? false : updated;
- }
- // Read the capacitive sensor value
- uint16_t ec_readkey_raw(uint8_t channel, uint8_t row, uint8_t col) {
- uint16_t sw_value = 0;
- // Select the multiplexer
- select_amux_channel(channel, col);
- // Set the row pin to low state to avoid ghosting
- gpio_write_pin_low(row_pins[row]);
- ATOMIC_BLOCK_FORCEON {
- // Set the row pin to high state and have capacitor charge
- charge_capacitor(row);
- // Read the ADC value
- sw_value = adc_read(adcMux);
- }
- // Discharge peak hold capacitor
- discharge_capacitor();
- // Waiting for the ghost capacitor to discharge fully
- wait_us(DISCHARGE_TIME);
- return sw_value;
- }
- // Update press/release state of key
- bool ec_update_key(matrix_row_t *current_row, uint8_t row, uint8_t col, uint16_t sw_value) {
- bool current_state = (*current_row >> col) & 1;
- // Real Time Noise Floor Calibration
- if (sw_value < (ec_config.noise_floor[row][col] - NOISE_FLOOR_THRESHOLD)) {
- uprintf("Noise Floor Change: %d, %d, %d\n", row, col, sw_value);
- ec_config.noise_floor[row][col] = sw_value;
- ec_config.rescaled_mode_0_actuation_threshold[row][col] = rescale(ec_config.mode_0_actuation_threshold, 0, 1023, ec_config.noise_floor[row][col], eeprom_ec_config.bottoming_reading[row][col]);
- ec_config.rescaled_mode_0_release_threshold[row][col] = rescale(ec_config.mode_0_release_threshold, 0, 1023, ec_config.noise_floor[row][col], eeprom_ec_config.bottoming_reading[row][col]);
- ec_config.rescaled_mode_1_initial_deadzone_offset[row][col] = rescale(ec_config.mode_1_initial_deadzone_offset, 0, 1023, ec_config.noise_floor[row][col], eeprom_ec_config.bottoming_reading[row][col]);
- }
- // Normal board-wide APC
- if (ec_config.actuation_mode == 0) {
- if (current_state && sw_value < ec_config.rescaled_mode_0_release_threshold[row][col]) {
- *current_row &= ~(1 << col);
- uprintf("Key released: %d, %d, %d\n", row, col, sw_value);
- return true;
- }
- if ((!current_state) && sw_value > ec_config.rescaled_mode_0_actuation_threshold[row][col]) {
- *current_row |= (1 << col);
- uprintf("Key pressed: %d, %d, %d\n", row, col, sw_value);
- return true;
- }
- }
- // Rapid Trigger
- else if (ec_config.actuation_mode == 1) {
- // Is key in active zone?
- if (sw_value > ec_config.rescaled_mode_1_initial_deadzone_offset[row][col]) {
- // Is key pressed while in active zone?
- if (current_state) {
- // Is the key still moving down?
- if (sw_value > ec_config.extremum[row][col]) {
- ec_config.extremum[row][col] = sw_value;
- uprintf("Key pressed: %d, %d, %d\n", row, col, sw_value);
- }
- // Has key moved up enough to be released?
- else if (sw_value < ec_config.extremum[row][col] - ec_config.rescaled_mode_1_release_offset[row][col]) {
- ec_config.extremum[row][col] = sw_value;
- *current_row &= ~(1 << col);
- uprintf("Key released: %d, %d, %d\n", row, col, sw_value);
- return true;
- }
- }
- // Key is not pressed while in active zone
- else {
- // Is the key still moving up?
- if (sw_value < ec_config.extremum[row][col]) {
- ec_config.extremum[row][col] = sw_value;
- }
- // Has key moved down enough to be pressed?
- else if (sw_value > ec_config.extremum[row][col] + ec_config.rescaled_mode_1_actuation_offset[row][col]) {
- ec_config.extremum[row][col] = sw_value;
- *current_row |= (1 << col);
- uprintf("Key pressed: %d, %d, %d\n", row, col, sw_value);
- return true;
- }
- }
- }
- // Key is not in active zone
- else {
- // Check to avoid key being stuck in pressed state near the active zone threshold
- if (sw_value < ec_config.extremum[row][col]) {
- ec_config.extremum[row][col] = sw_value;
- *current_row &= ~(1 << col);
- return true;
- }
- }
- }
- return false;
- }
- // Print the matrix values
- void ec_print_matrix(void) {
- for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
- for (uint8_t col = 0; col < MATRIX_COLS - 1; col++) {
- uprintf("%4d,", sw_value[row][col]);
- }
- uprintf("%4d\n", sw_value[row][MATRIX_COLS - 1]);
- }
- print("\n");
- }
- // Check if the position is unused
- #ifdef UNUSED_POSITIONS_LIST
- bool is_unused_position(uint8_t row, uint8_t col) {
- for (uint8_t i = 0; i < UNUSED_POSITIONS_COUNT; i++) {
- if (UNUSED_POSITIONS[i][0] == row && UNUSED_POSITIONS[i][1] == col) {
- return true;
- }
- }
- return false;
- }
- #endif
- // Rescale the value to a different range
- uint16_t rescale(uint16_t x, uint16_t in_min, uint16_t in_max, uint16_t out_min, uint16_t out_max) {
- return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
- }