exp.3p (4705B)
- '\" et
- .TH EXP "3P" 2017 "IEEE/The Open Group" "POSIX Programmer's Manual"
- .\"
- .SH PROLOG
- This manual page is part of the POSIX Programmer's Manual.
- The Linux implementation of this interface may differ (consult
- the corresponding Linux manual page for details of Linux behavior),
- or the interface may not be implemented on Linux.
- .\"
- .SH NAME
- exp,
- expf,
- expl
- \(em exponential function
- .SH SYNOPSIS
- .LP
- .nf
- #include <math.h>
- .P
- double exp(double \fIx\fP);
- float expf(float \fIx\fP);
- long double expl(long double \fIx\fP);
- .fi
- .SH DESCRIPTION
- The functionality described on this reference page is aligned with the
- ISO\ C standard. Any conflict between the requirements described here and the
- ISO\ C standard is unintentional. This volume of POSIX.1\(hy2017 defers to the ISO\ C standard.
- .P
- These functions shall compute the base-\c
- .IR e
- exponential of
- .IR x .
- .P
- An application wishing to check for error situations should set
- .IR errno
- to zero and call
- .IR feclearexcept (FE_ALL_EXCEPT)
- before calling these functions. On return, if
- .IR errno
- is non-zero or \fIfetestexcept\fR(FE_INVALID | FE_DIVBYZERO |
- FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has occurred.
- .SH "RETURN VALUE"
- Upon successful completion, these functions shall return the
- exponential value of
- .IR x .
- .P
- If the correct value would cause overflow, a range error shall occur
- and
- \fIexp\fR(),
- \fIexpf\fR(),
- and
- \fIexpl\fR()
- shall return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
- respectively.
- .P
- If the correct value would cause underflow,
- and is not representable,
- a range error may occur, and
- \fIexp\fR(),
- \fIexpf\fR(),
- and
- \fIexpl\fR()
- shall return
- 0.0, or
- (if the IEC 60559 Floating-Point option is not supported) an
- implementation-defined value no greater in magnitude than DBL_MIN,
- FLT_MIN, and LDBL_MIN, respectively.
- .P
- If
- .IR x
- is NaN, a NaN shall be returned.
- .P
- If
- .IR x
- is \(+-0, 1 shall be returned.
- .P
- If
- .IR x
- is \-Inf, +0 shall be returned.
- .P
- If
- .IR x
- is +Inf,
- .IR x
- shall be returned.
- .P
- If the correct value would cause underflow, and is representable, a
- range error may occur and the correct value shall be returned.
- .SH ERRORS
- These functions shall fail if:
- .IP "Range\ Error" 12
- The result overflows.
- .RS 12
- .P
- If the integer expression (\fImath_errhandling\fR & MATH_ERRNO) is
- non-zero, then
- .IR errno
- shall be set to
- .BR [ERANGE] .
- If the integer expression (\fImath_errhandling\fR & MATH_ERREXCEPT) is
- non-zero, then the overflow floating-point exception shall be raised.
- .RE
- .P
- These functions may fail if:
- .IP "Range\ Error" 12
- The result underflows.
- .RS 12
- .P
- If the integer expression (\fImath_errhandling\fR & MATH_ERRNO) is
- non-zero, then
- .IR errno
- shall be set to
- .BR [ERANGE] .
- If the integer expression (\fImath_errhandling\fR & MATH_ERREXCEPT) is
- non-zero, then the underflow floating-point exception shall be raised.
- .RE
- .LP
- .IR "The following sections are informative."
- .SH EXAMPLES
- .SS "Computing the Density of the Standard Normal Distribution"
- .P
- This function shows an implementation for the density of the standard
- normal distribution using
- \fIexp\fR().
- This example uses the constant M_PI which is part of the XSI option.
- .sp
- .RS 4
- .nf
- #include <math.h>
- .P
- double
- normal_density (double x)
- {
- return exp(-x*x/2) / sqrt (2*M_PI);
- }
- .fi
- .P
- .RE
- .SH "APPLICATION USAGE"
- On error, the expressions (\fImath_errhandling\fR & MATH_ERRNO) and
- (\fImath_errhandling\fR & MATH_ERREXCEPT) are independent of each
- other, but at least one of them must be non-zero.
- .SH RATIONALE
- None.
- .SH "FUTURE DIRECTIONS"
- None.
- .SH "SEE ALSO"
- .IR "\fIfeclearexcept\fR\^(\|)",
- .IR "\fIfetestexcept\fR\^(\|)",
- .IR "\fIisnan\fR\^(\|)",
- .IR "\fIlog\fR\^(\|)"
- .P
- The Base Definitions volume of POSIX.1\(hy2017,
- .IR "Section 4.20" ", " "Treatment of Error Conditions for Mathematical Functions",
- .IR "\fB<math.h>\fP"
- .\"
- .SH COPYRIGHT
- Portions of this text are reprinted and reproduced in electronic form
- from IEEE Std 1003.1-2017, Standard for Information Technology
- -- Portable Operating System Interface (POSIX), The Open Group Base
- Specifications Issue 7, 2018 Edition,
- Copyright (C) 2018 by the Institute of
- Electrical and Electronics Engineers, Inc and The Open Group.
- In the event of any discrepancy between this version and the original IEEE and
- The Open Group Standard, the original IEEE and The Open Group Standard
- is the referee document. The original Standard can be obtained online at
- http://www.opengroup.org/unix/online.html .
- .PP
- Any typographical or formatting errors that appear
- in this page are most likely
- to have been introduced during the conversion of the source files to
- man page format. To report such errors, see
- https://www.kernel.org/doc/man-pages/reporting_bugs.html .