erf.3p (4246B)
- '\" et
- .TH ERF "3P" 2017 "IEEE/The Open Group" "POSIX Programmer's Manual"
- .\"
- .SH PROLOG
- This manual page is part of the POSIX Programmer's Manual.
- The Linux implementation of this interface may differ (consult
- the corresponding Linux manual page for details of Linux behavior),
- or the interface may not be implemented on Linux.
- .\"
- .EQ
- delim $$
- .EN
- .SH NAME
- erf,
- erff,
- erfl
- \(em error functions
- .SH SYNOPSIS
- .LP
- .nf
- #include <math.h>
- .P
- double erf(double \fIx\fP);
- float erff(float \fIx\fP);
- long double erfl(long double \fIx\fP);
- .fi
- .SH DESCRIPTION
- The functionality described on this reference page is aligned with the
- ISO\ C standard. Any conflict between the requirements described here and the
- ISO\ C standard is unintentional. This volume of POSIX.1\(hy2017 defers to the ISO\ C standard.
- .P
- These functions shall compute the error function of their argument
- .IR x ,
- defined as:
- .sp
- .RS
- ${2 over sqrt pi} int from 0 to x e"^" " "{- t"^" 2" "} dt$
- .RE
- .P
- An application wishing to check for error situations should set
- .IR errno
- to zero and call
- .IR feclearexcept (FE_ALL_EXCEPT)
- before calling these functions. On return, if
- .IR errno
- is non-zero or \fIfetestexcept\fR(FE_INVALID | FE_DIVBYZERO |
- FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has occurred.
- .SH "RETURN VALUE"
- Upon successful completion, these functions shall return the value of
- the error function.
- .P
- If
- .IR x
- is NaN, a NaN shall be returned.
- .P
- If
- .IR x
- is \(+-0, \(+-0 shall be returned.
- .P
- If
- .IR x
- is \(+-Inf, \(+-1 shall be returned.
- .P
- If the correct value would cause underflow, a range error may occur, and
- \fIerf\fR(),
- \fIerff\fR(),
- and
- \fIerfl\fR()
- shall return an implementation-defined value no greater in magnitude
- than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.
- .P
- If the IEC 60559 Floating-Point option is supported, 2 *
- .IR x /\c
- .IR sqrt (\(*p)
- should be returned.
- .SH ERRORS
- These functions may fail if:
- .IP "Range\ Error" 12
- The result underflows.
- .RS 12
- .P
- If the integer expression (\fImath_errhandling\fR & MATH_ERRNO) is
- non-zero, then
- .IR errno
- shall be set to
- .BR [ERANGE] .
- If the integer expression (\fImath_errhandling\fR & MATH_ERREXCEPT) is
- non-zero, then the underflow floating-point exception shall be raised.
- .RE
- .br
- .LP
- .IR "The following sections are informative."
- .SH EXAMPLES
- .SS "Computing the Probability for a Normal Variate"
- .P
- This example shows how to use
- \fIerf\fR()
- to compute the probability that a normal variate assumes a value in the
- range [\fIx\fR1,\fIx\fR2] with \fIx\fR1\(<=\fIx\fR2.
- .P
- This example uses the constant M_SQRT1_2 which is part of the XSI option.
- .sp
- .RS 4
- .nf
- #include <math.h>
- .P
- double
- Phi(const double x1, const double x2)
- {
- return ( erf(x2*M_SQRT1_2) - erf(x1*M_SQRT1_2) ) / 2;
- }
- .fi
- .P
- .RE
- .SH "APPLICATION USAGE"
- Underflow occurs when |\fIx\fP| < DBL_MIN * (\c
- .IR sqrt (\(*p)/2).
- .P
- On error, the expressions (\fImath_errhandling\fR & MATH_ERRNO) and
- (\fImath_errhandling\fR & MATH_ERREXCEPT) are independent of each
- other, but at least one of them must be non-zero.
- .SH RATIONALE
- None.
- .SH "FUTURE DIRECTIONS"
- None.
- .SH "SEE ALSO"
- .IR "\fIerfc\fR\^(\|)",
- .IR "\fIfeclearexcept\fR\^(\|)",
- .IR "\fIfetestexcept\fR\^(\|)",
- .IR "\fIisnan\fR\^(\|)"
- .P
- The Base Definitions volume of POSIX.1\(hy2017,
- .IR "Section 4.20" ", " "Treatment of Error Conditions for Mathematical Functions",
- .IR "\fB<math.h>\fP"
- .\"
- .SH COPYRIGHT
- Portions of this text are reprinted and reproduced in electronic form
- from IEEE Std 1003.1-2017, Standard for Information Technology
- -- Portable Operating System Interface (POSIX), The Open Group Base
- Specifications Issue 7, 2018 Edition,
- Copyright (C) 2018 by the Institute of
- Electrical and Electronics Engineers, Inc and The Open Group.
- In the event of any discrepancy between this version and the original IEEE and
- The Open Group Standard, the original IEEE and The Open Group Standard
- is the referee document. The original Standard can be obtained online at
- http://www.opengroup.org/unix/online.html .
- .PP
- Any typographical or formatting errors that appear
- in this page are most likely
- to have been introduced during the conversion of the source files to
- man page format. To report such errors, see
- https://www.kernel.org/doc/man-pages/reporting_bugs.html .