atan2.3p (5653B)
- '\" et
- .TH ATAN2 "3P" 2017 "IEEE/The Open Group" "POSIX Programmer's Manual"
- .\"
- .SH PROLOG
- This manual page is part of the POSIX Programmer's Manual.
- The Linux implementation of this interface may differ (consult
- the corresponding Linux manual page for details of Linux behavior),
- or the interface may not be implemented on Linux.
- .\"
- .SH NAME
- atan2,
- atan2f,
- atan2l
- \(em arc tangent functions
- .SH SYNOPSIS
- .LP
- .nf
- #include <math.h>
- .P
- double atan2(double \fIy\fP, double \fIx\fP);
- float atan2f(float \fIy\fP, float \fIx\fP);
- long double atan2l(long double \fIy\fP, long double \fIx\fP);
- .fi
- .SH DESCRIPTION
- The functionality described on this reference page is aligned with the
- ISO\ C standard. Any conflict between the requirements described here and the
- ISO\ C standard is unintentional. This volume of POSIX.1\(hy2017 defers to the ISO\ C standard.
- .P
- These functions shall compute the principal value of the arc tangent of
- .IR y /\c
- .IR x ,
- using the signs of both arguments to determine the quadrant of the
- return value.
- .P
- An application wishing to check for error situations should set
- .IR errno
- to zero and call
- .IR feclearexcept (FE_ALL_EXCEPT)
- before calling these functions. On return, if
- .IR errno
- is non-zero or \fIfetestexcept\fR(FE_INVALID | FE_DIVBYZERO |
- FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has occurred.
- .SH "RETURN VALUE"
- Upon successful completion, these functions shall return the arc
- tangent of
- .IR y /\c
- .IR x
- in the range [\-\(*p,\(*p] radians.
- .P
- If
- .IR y
- is \(+-0 and
- .IR x
- is < 0, \(+-\(*p shall be returned.
- .P
- If
- .IR y
- is \(+-0 and
- .IR x
- is > 0, \(+-0 shall be returned.
- .P
- If
- .IR y
- is < 0 and
- .IR x
- is \(+-0, \-\(*p/2 shall be returned.
- .P
- If
- .IR y
- is > 0 and
- .IR x
- is \(+-0, \(*p/2 shall be returned.
- .P
- If
- .IR x
- is 0, a pole error shall not occur.
- .P
- If either
- .IR x
- or
- .IR y
- is NaN, a NaN shall be returned.
- .P
- If the correct value would cause underflow, a range error may occur, and
- \fIatan\fR(),
- \fIatan2f\fR(),
- and
- \fIatan2l\fR()
- shall return an implementation-defined value no greater in magnitude
- than DBL_MIN, FLT_MIN, and LDBL_MIN, respectively.
- .P
- If the IEC 60559 Floating-Point option is supported,
- .IR y /\c
- .IR x
- should be returned.
- .P
- If
- .IR y
- is \(+-0 and
- .IR x
- is \-0, \(+-\(*p shall be returned.
- .P
- If
- .IR y
- is \(+-0 and
- .IR x
- is +0, \(+-0 shall be returned.
- .P
- For finite values of \(+-\c
- .IR y
- > 0, if
- .IR x
- is \-Inf, \(+-\(*p shall be returned.
- .P
- For finite values of \(+-\c
- .IR y
- > 0, if
- .IR x
- is +Inf, \(+-0 shall be returned.
- .P
- For finite values of
- .IR x ,
- if
- .IR y
- is \(+-Inf, \(+-\(*p/2 shall be returned.
- .P
- If
- .IR y
- is \(+-Inf and
- .IR x
- is \-Inf, \(+-3\(*p/4 shall be returned.
- .P
- If
- .IR y
- is \(+-Inf and
- .IR x
- is +Inf, \(+-\(*p/4 shall be returned.
- .P
- If both arguments are 0, a domain error shall not occur.
- .SH ERRORS
- These functions may fail if:
- .IP "Range\ Error" 12
- The result underflows.
- .RS 12
- .P
- If the integer expression (\fImath_errhandling\fR & MATH_ERRNO) is
- non-zero, then
- .IR errno
- shall be set to
- .BR [ERANGE] .
- If the integer expression (\fImath_errhandling\fR & MATH_ERREXCEPT) is
- non-zero, then the underflow floating-point exception shall be raised.
- .RE
- .LP
- .IR "The following sections are informative."
- .SH EXAMPLES
- .SS "Converting Cartesian to Polar Coordinates System"
- .P
- The function below uses
- \fIatan2\fR()
- to convert a 2d vector expressed in cartesian coordinates
- (\fIx\fR,\fIy\fR) to the polar coordinates (\fIrho\fR,\fItheta\fR).
- There are other ways to compute the angle
- .IR theta ,
- using
- \fIasin\fR()
- \fIacos\fR(),
- or
- \fIatan\fR().
- However,
- \fIatan2\fR()
- presents here two advantages:
- .IP " *" 4
- The angle's quadrant is automatically determined.
- .IP " *" 4
- The singular cases (0,\fIy\fR) are taken into account.
- .P
- Finally, this example uses
- \fIhypot\fR()
- rather than
- \fIsqrt\fR()
- since it is better for special cases; see
- \fIhypot\fR()
- for more information.
- .sp
- .RS 4
- .nf
- #include <math.h>
- .P
- void
- cartesian_to_polar(const double x, const double y,
- double *rho, double *theta
- )
- {
- *rho = hypot (x,y); /* better than sqrt(x*x+y*y) */
- *theta = atan2 (y,x);
- }
- .fi
- .P
- .RE
- .SH "APPLICATION USAGE"
- On error, the expressions (\fImath_errhandling\fR & MATH_ERRNO) and
- (\fImath_errhandling\fR & MATH_ERREXCEPT) are independent of each
- other, but at least one of them must be non-zero.
- .SH RATIONALE
- None.
- .SH "FUTURE DIRECTIONS"
- None.
- .SH "SEE ALSO"
- .IR "\fIacos\fR\^(\|)",
- .IR "\fIasin\fR\^(\|)",
- .IR "\fIatan\fR\^(\|)",
- .IR "\fIfeclearexcept\fR\^(\|)",
- .IR "\fIfetestexcept\fR\^(\|)",
- .IR "\fIhypot\fR\^(\|)",
- .IR "\fIisnan\fR\^(\|)",
- .IR "\fIsqrt\fR\^(\|)",
- .IR "\fItan\fR\^(\|)"
- .P
- The Base Definitions volume of POSIX.1\(hy2017,
- .IR "Section 4.20" ", " "Treatment of Error Conditions for Mathematical Functions",
- .IR "\fB<math.h>\fP"
- .\"
- .SH COPYRIGHT
- Portions of this text are reprinted and reproduced in electronic form
- from IEEE Std 1003.1-2017, Standard for Information Technology
- -- Portable Operating System Interface (POSIX), The Open Group Base
- Specifications Issue 7, 2018 Edition,
- Copyright (C) 2018 by the Institute of
- Electrical and Electronics Engineers, Inc and The Open Group.
- In the event of any discrepancy between this version and the original IEEE and
- The Open Group Standard, the original IEEE and The Open Group Standard
- is the referee document. The original Standard can be obtained online at
- http://www.opengroup.org/unix/online.html .
- .PP
- Any typographical or formatting errors that appear
- in this page are most likely
- to have been introduced during the conversion of the source files to
- man page format. To report such errors, see
- https://www.kernel.org/doc/man-pages/reporting_bugs.html .